

April, 1998

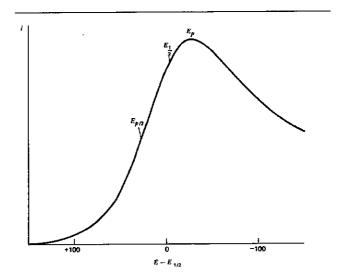
notes and applications from Bioanalytical Systems, Inc.

Peak Potential Separation for the Cyclic Voltammogram of a Reversible Process

One of the commonly quoted characteristic parameters for a cyclic voltammogram is the separation of the anodic and cathodic peak potentials, ΔE_p . For a reversible process, ΔE_p is slightly less than 60 mV, and this value is independent of the scan rate. However, the value quoted for ΔE_p for a reversible system varies between 57 and 59 mV. The aim of this Capsule is to discuss the equations from which the theoretical value of ΔE_p is derived and the parameters on which ΔE_p is dependent.

Let us first consider the relationship between the peak potential (E_p) and the redox potential for a linear sweep voltammogram (F1). The redox potential used for these definitions can either be the formal potential (E^0) or the half-wave potential ($E_{1/2}$). These potentials are related by the equation

$$E_{1/2} = E^{0'} + \frac{RT}{nF} \ln \left(\frac{D_R^{1/2}}{D_0^{1/2}} \right)$$


When the diffusion coefficients of the oxidized and reduced species (D_0 and D_R respectively) are equal, $E^{0'}$ and $E_{1/2}$ are identical.

The difference between E_p and $E_{1/2}$ for a reversible reduction is given by the equation:

$$E_p - E_{1/2} = -1.11 \left(\frac{RT}{nF} \right) = -28.5 \text{ mV at } 25 \text{ °C}.$$

Note that the difference is dependent on the temperature. It increases by about 1 mV for each 10 degree increase in the temperature (also note that n=1 was used in the calculation of this value, and is also used in subsequent calculations).

Another parameter that is characteristic for a linear sweep or cyclic voltammogram is the half-peak potential $E_{\rm p/2}$ (this is the potential at half the peak current).

Figure 1. Potential parameters for the linear sweep voltammogram of a reversible process.

The difference between $E_{p/2}$ and $E_{1/2}$ for a reversible reduction is given by the equation:

$$E_{p/2} - E_{1/2} = +1.09 \left(\frac{RT}{nF}\right) = +28.0 \text{ mV at } 25 \text{ °C}.$$

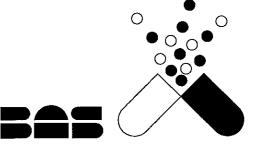
Note that, while this value is similar to the value for the difference between E_p and $E_{1/2}$, it is not identical.

If the two equations above are combined, the difference between E_n and $E_{n/2}$ for a reversible process is obtained:

$$\left| E_p - E_{p/2} \right| = 2.2 \left(\frac{RT}{nF} \right) = 56.5 \text{ mV at } 25 \text{ °C}.$$

For cyclic voltammetry, it is more convenient to consider the difference between the peak potentials (ΔE_p) rather than the difference between E_p and $E_{1/2}$. Simplistically, it might be thought that this can be derived for a

reversible process by doubling the difference between E_p and $E_{1/2}$ (i.e., $\Delta E_p = 57$ mV). However, ΔE_p is also dependent on the difference between the cathodic peak potential E_{pc} (for a reduction on the forward scan) and the switching potential E_{λ} , as is shown in the table below (1).


Epc - El (mV)	ΔE _p (mV)
71.5	60.5
121.5	59.2
171.5	58.3
271.5	57.8
∞	57.0

As can be seen, although ΔE_p tends towards a limit of 57 mV at high values of E_{pc} - E_{λ} , for most experiments, ΔE_p will be 1 or 2 mV larger. Therefore, caution is required when quoting "theoretical values" for ΔE_p .

The data in the above table are based on a temperature of 25 °C. Since ΔE_p does vary with temperature, it is important to maintain a fixed temperature when quoting experimental data to a high degree of precision. If the temperature is not controlled, then this should be taken into account when quoting the experimental error.

References

 A.J. Bard and L.R. Faulkner, "Electrochemical Methods," Wiley, New York, 1980.

