

preliminary notes and applications from Bioanalytical Systems, Inc.

Determination of Glucose and Other Reducing Sugars

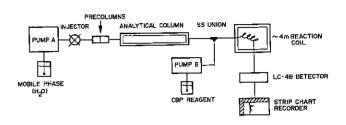
Purpose

Determination of glucose and other reducing sugars at low concentrations in biological samples containing cations and anions.

This report outlines a procedure, as described recently (1,2), for determining glucose and other reducing sugars using an amperometric detector and copper bis(phenanthroline) (CBP) as a post-column mediator. The detection scheme is based on the reduction of the metal complex (by the reducing sugar) followed by its oxidation at the surface of a glassy carbon electrode:

Existing Methods

Most liquid chromatographic (LC) determinations of carbohydrates rely on the separation of the compounds of interest on either amino-bonded silica or strongly acidic cation exchange resins followed by detection with a refractive index (RI) detector. RI detectors lack sensitivity and specificity, limiting this approach to the measurement of large concentrations of carbohydrates. To improve sensitivity, various pre-and post-column reactions have been used in combination with UV or fluorescence detectors.


Reference

The experiments outlined below were carried out in the BAS research laboratories by Lee Elrod.

Conditions

System: LC-154 with column temperature controller

Electrode: Glassy Carbon Potential: 0.0 V vs. Ag/AgCl

Figure 1. Schematic drawing of LCEC system used for glucose determination.

Precolumns: Anion + cation (each 30 x 4.6 mm)*

Analytical Column: Strong cation exchange,

calcium form (250 x 4.6 mm)*

Temperature: 85°C (analytical column)

Mobile Phase: Deionized water - Flow rate 0.25

mL/min (600 psi) Injection Volume: 50 μL

Post Column Addition: The reagent solution consists of 2 mM CBP (prepared as the perchlorate salt, see reference 3) dissolved in 0.1 M phosphate buffer (pH 11.2). It is infused into the system at 0.85 mL/min. The mixture of column effluent and reagent solution reacts during passage through a 4-meter by 0.5 mm (ID) Teflon coil maintained at 100°C. The system is schematically presented in Figure 1. Both mobile phase and reagent solution are continuously sparged with helium for increased sensitivity.

Comments

Typical chromatograms for reducing sugars are presented in Figure 2. In this report, pre-columns were used to eliminate cations and anions which were present in the (real world) biological samples. Pre-columns can be omitted when ions are not a problem. Using this procedure, glucose was quantitated at 50 ng/mL (2.5 ng injected) in a saline solu-

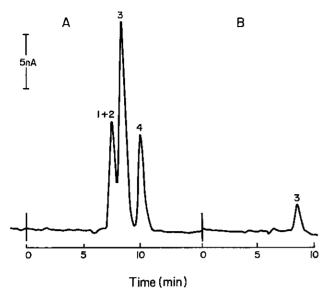
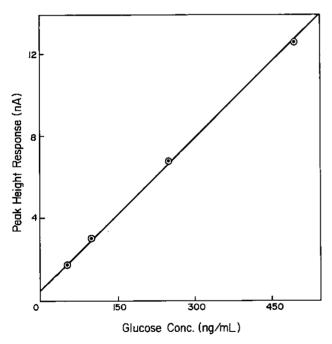



Figure 2. Chromatograms of reducing sugars using the system outlined in Figure 1. A) mixed standard; 1,lactose; 2, maltose; 4, fructose (25 ng injected, each); 3, glucose (50 ng injected). B) glucose standard (5 ng, injected).

Figure 3. Linearity curve for glucose. Slope, 2.41 x 10⁻²; Y-intercept, +0.58; correlation coefficient, 0.9997.

tion with precision (RSD of \pm 13.5%; N = 10). Glucose peak-height response versus concentration is shown in Figure 3. This response is linear to at least 500 ng/mL.

* Contact BAS

References

- 1. N. Watanabe and M. Inoue, Anal. Chem. 55(1983) 1016.
- 2. N. Watanabe , J. Chromatogr. 330(1985) 333. See Capsule 149 for a summary of this paper.
- 3. B.J. Hathaway, I.M. Procter, R.C. Slade, and A.A.G. Tomlinson, J. Chem. Soc. A, 2219 (1969).
- 4. P.G. Koski, Current Separations, 8 (1987) 26.

