

preliminary notes and applications from Bioanalytical Systems, Inc.

# Determination Of Iodide And Thiosulfate

# **Purpose**

Determination of iodide and thiosulfate by ion-pair chromatography with UV and EC detection.

## **Existing Methods**

Classical ion chromatography. However, microparticulate reverse-phase columns are more efficient and cheaper than ion-exchange columns.

### Reference

Determination of lodide and Thiosulfate by Pairedlon, Reversed-Phase High-Performance Liquid Chromatography with Ultraviolet Absorbance, Electrochemical and Conductimetric Detection, M. Lookabaugh, I.S. Krull and W.R. LaCourse, J. Chromatogr., 387(1987) 301-312.

#### Conditions

Detector: BAS Dual 4B/17

Electrode: BAS dual series glassy carbon

Potential: iodide: upstream +1.05 V, downstream - 0.15 V, vs. Ag/AgCl; thiosulfate: single electrode

+1.05V

Column: Econosphere C18 (250 x 4.6 mm)

Mobile Phase: 0.005 M tetrabutylammonium sulfate (TBAHS) in methanol: phosphate buffer (15:85),

pH 7.0. Flow rate was 1.0 mL/min.

Detection Limit: lodide: 40 ppb EC, 10 ppb UV

thiosulfate: 10 ppb EC, 50 ppb UV

## Sample Preparation

Potassium iodide and sodium thiosulfate standards were used.

#### **Notes**

Electrochemical detection of iodide was highly specific because of its characteristic upstream and downstream response.

For UV detection, use a wavelength of 223 nm for iodide and 212 nm for thiosulfate.

This determination can be duplicated using the BAS 400 Liquid Chromatograph.

Professor Ira S. Krull is a member of the BAS Scientific Advisory Board. He is a frequent contributor to our journal Current Separations.

The information in this publication is supplied as a service to our customers. Performance of the methodology has not necessarily been verified by BAS technical staff.

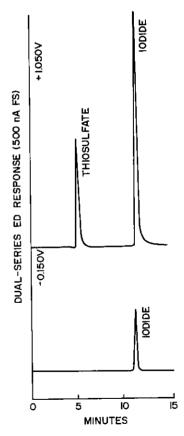



Figure 1. Chromatograms from upstream and downstream electrodes.

COPYRIGHT 1987, Bioanalytical Systems, Inc.